Check the Chain (ctc)

Sep 25, 2022

THE BASICS

1 Features 3
2 Guide 5
3 Datatypes 7
4 Specific Protocols 9
5 External Data Sources 11

Index 53

Check the Chain (ctc)

Note: ctc is in beta, please report bugs to the issue tracker

These docs are also a work in progress. Some sections are not yet complete. Feel free to report any documentation-
related issues to the issue tracker.

ctc is a tool for historical data analysis of Ethereum and other EVM chains

It can be used as either 1) a cli tool or 2) a python package

THE BASICS 1

https://github.com/fei-protocol/checkthechain/issues

Check the Chain (ctc)

2 THE BASICS

CHAPTER
ONE

FEATURES

data collection: collects data from archive nodes quantitative data summaries

robustly and efficiently * data visualization: plots data to maximize data
data storage: stores collected data on disk so that interpretability and sharing

it only needs to be collected once * protocol specificity: includes functionality for
data coding: handles data encoding and decoding protocols like Chainlink and Uniswap
automatically by default * command line interface: performs many block
data analysis: computes derived metrics and other explorer tasks in the terminal

Check the Chain (ctc)

4 Chapter 1. Features

CHAPTER
TWO

GUIDE

¢ To install ctc, see Installation.
¢ To use ctc from the command line, see Command Line Interface.
* To use ctc in python, see Python Interface.

» Touse ctc with specific protocols like Uniswap or Chainlink, see the Specific Protocols (cli) or Specific Protocols
(python).

* To view the ctc source code, check out the GitHub Repository.

overview/installation.html
cli/basic_usage.html
python/code_tour.html
cli/subcommands/protocol.html
python/specific_protocols.html
python/specific_protocols.html
https://github.com/fei-protocol/checkthechain

Check the Chain (ctc)

6 Chapter 2. Guide

CHAPTER

THREE
DATATYPES
Datatype CLI Python Source
ABIs CLI Python Source
Addresses CLI Python Source
Binary Data CLI Python Source
Blocks CLI Python Source
ERC20s CLI Python Source
ETH Balances CLI Python Source
Events CLI Python Source
Transactions CLI Python Source

cli/subcommands/data/abi.html
python/datatypes/abis.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/abi_utils
cli/subcommands/data/address.html
python/datatypes/addresses.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/address_utils
cli/subcommands/compute.html
python/datatypes/binary_data.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/binary_utils
cli/subcommands/data/blocks.html
python/datatypes/blocks.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/block_utils
cli/subcommands/data/erc20_balances.html
python/datatypes/erc20s.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/erc20_utils
cli/subcommands/data/eth_balances.html
python/datatypes/eth_balances.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/eth_utils
cli/subcommands/data/events.html
python/datatypes/events.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/event_utils
cli/subcommands/data/tx.html
python/datatypes/transactions.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/evm/transaction_utils

Check the Chain (ctc)

8 Chapter 3. Datatypes

CHAPTER
FOUR

SPECIFIC PROTOCOLS

Protocol CLI Python Source
Aave V2 CLI Python Source
Balancer CLI Python Source
Chainlink CLI Python Source
Compound - Python Source
Curve CLI Python Source
ENS CLI Python Source
Fei CLI Python Source
Gnosis Safe CLI Python Source
Multicall CLI Python Source
Rari CLI Python Source
Uniswap V2 CLI Python Source
Uniswap V3 CLI Python Source
Yearn CLI Python Source

cli/subcommands/protocol/aave.html
python/protocols/aave_v2.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/aave_v2_utils/
cli/subcommands/data/dex_pools.html
python/protocols/balancer.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/balancer_utils/
cli/subcommands/protocol/chainlink.html
python/protocols/chainlink.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/chainlink_utils
python/protocols/compound.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/compound_utils/
cli/subcommands/data/dex_pools.html
python/protocols/curve.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/curve_utils/
cli/subcommands/protocol/ens.html
python/protocols/ens.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/ens_utils/
cli/subcommands/protocol/fei_pcv.html
python/protocols/fei.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/fei_utils/
cli/subcommands/protocol/gnosis.html
python/protocols/gnosis_safe.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/gnosis_utils/
cli/subcommands/data/calls.html
python/protocols/multicall.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/multicall_utils/
cli/subcommands/protocol/rari.html
python/protocols/rari.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/rari_utils/
cli/subcommands/protocol/uniswap_chart.html
python/protocols/uniswap_v2.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/uniswap_v2_utils/
cli/subcommands/protocol/uniswap_chart.html
python/protocols/uniswap_v3.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/uniswap_v3_utils/
cli/subcommands/protocol/yearn.html
python/protocols/yearn.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/yearn_utils/

Check the Chain (ctc)

10 Chapter 4. Specific Protocols

CHAPTER
FIVE

EXTERNAL DATA SOURCES

Data Source CLI Python Source
4byte CLI Python Source
CoinGecko CLI Python Source
Defi Llama CLI Python Source
Etherscan CLI Python Source

5.1 Installation

5.1.1 Basic Installation

Installing ctc takes 2 steps:

1. pip install checkthechain

2. ctc setup in the terminal to run the setup wizard (can skip most steps by pressing enter)
See Configuration for additional setup options.

If your shell’s PATH does not include python package scripts, you need to do something like python3 -m pip ...
and python3 -m ctc ...

Installation requires python 3.7 or greater. see Dependencies for more information.

5.1.2 Upgrading

Upgrading to a new version of ctc takes two steps:
1. pip install checkthechain -U
2. Rerun the setup wizard by running ctc setup (can skip most steps by pressing enter)

If you previously installed ctc directly from a git commit, you may need to first pip uninstall checkthechain
before upgrading.

When upgrading you should also check the changelog for

11

cli/subcommands/protocol/4byte.html
python/protocols/4byte.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/fourbyte_utils
cli/subcommands/protocol/cg.html
python/protocols/coingecko.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/coingecko_utils
cli/subcommands/protocol/llama.html
python/protocols/llama.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/llama_utils
cli/subcommands/protocol/etherscan.html
python/protocols/etherscan.html
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/etherscan_utils

Check the Chain (ctc)

5.1.3 Uninstalling

Fully removing ctc from a machine takes three steps:
1. Uninstall the package pip uninstall checkthechain
2. Remove the config folder: rm -rf ~/.config/ctc
3. Remove the data folder: rm -rf ~/ctc_data

You can always check whether a package has been uninstalled from your python environment by attempting to import
it in a fresh shell. If you see a ModuleNotFoundError, the package has been uninstalled.

>>> import ctc

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ModuleNotFoundError: No module named

>>> # ctc is not uninstalled

ctc

5.1.4 Special Installations

Installing from source

If you would like to install the latest version of ctc you can clone the repo directly:

git clone
cd checkthechain
python -m pip install ./

Installing in develop mode / edit mode

If you would like to make edits to the ctc codebase and actively use those edits in your python programs, you can
install the package in developer mode with the -e flag:

git clone
cd checkthechain
python -m pip install -e ./

5.1.5 Libraries

On a fresh installation of Ubuntu or Debian, you may need to manually install the build-essential and python-dev
packages. Machines that are used for active python development probably already have these packages installed.

PYTHON_VERSION=$ (python3 -c "import sys; print('python' + str(sys.version_info.major) +
'." + str(sys.version_info.minor))")

python3 -m pip install $PYTHON_VERSION-dev
sudo apt-get install build-essential

12 Chapter 5. External Data Sources

Check the Chain (ctc)

5.2 Dependencies

TLDR
This page is only aimed at users that would like know what ctc depends on under the hood.

If you just want to install ctc then check out the /nstallation docs.

5.2.1 OS Dependencies

Usage of ctc requires python 3.7 or greater.

When using a fresh installation of Debian or Ubuntu, you may need to manually install build-essential and
python-dev. These are libraries required by many python packages including ctc. If you are an active python user
it’s likely that these are already installed on your machine. If you are setting up a new machine or environment, you
may need to install them according to your operating system and python version.

To install these os dependencies on a fresh Debian / Ubuntu machine, can use the following:

PYTHON_VERSION=$(python3 -c "import sys; print('python' + str(sys.version_info.major) +
'." + str(sys.version_info.minor))")

python3 -m pip install $PYTHON_VERSION-dev
sudo apt-get install build-essential

5.2.2 Libraries

ctc depends on a few different types of external packages:
1. data science dependencies include standard python library packages including numpy and pandas.
2. 10 dependencies include packages like aiohttp for network communication and toml for file io.

3. toolsuite dependencies are general python utilities coming the toolsuite set of repos. These are written by
the same authors as ctc.

4. EVM/Cryptography dependencies include pycryptodome, rlp, and eth_abi.
Each of these dependencies has its own dependencies.

Reliance on these packages will be minimized in future releases to minimize attack surface and to maximize the number
of environments in which ctc can be run. Some of the common libraries in the EVM ecosystem have incompatible
requirements. For example, ethereum-etl requires older versions of web3py and eth_abi, and so a single environ-
ment cannot contain the most recent versions of all of these packages.

5.2. Dependencies 13

Check the Chain (ctc)

5.2.3 Type Checking

ctc uses mypy for static analysis of type annotations. This helps catch errors before they can appear at runtime. Custom
types used by ctc can be found in the ctc. spec subpackage.

Checks are currently performed using mypy=0.930. Future mypy versions and features will be used as they become
available. End users of ctc do not need mypy unless they are interested in running these type checks.

New python type annotation features will be used as they become available using typing_extensions. By using
typing_extensions and from __future__ import annotations, new typing features can be used as they are
released without sacrificing backward compatibility.

5.2.4 Testing

ctc tests are run using pytest 7.0.0 with the pytest-asyncio extension. These can be run using pytest . in
the /tests directory.

5.2.5 Documentation

ctc documentation is built using sphinx 4.5.0. Source files and build instructions can be found in the Documentation
Repository.

5.2.6 Databases

ctc stores much of the data it downloads in sql databases. Support for sqlite is currently in beta and support for
postgresql is coming soon.

For more details see Data Storage

5.3 Configuration

TLDR

Run ctc setup on the command line to create the config. Run it again to edit the config.

ctc uses a configuration file to control its behavior.

5.3.1 Setting Config Parameters

Users do not need to directly create or edit ctc config files. Instead, all config parameters can be adjusted by using
the setup wizard by running ctc setup on the command line. This can be used both for creating new configs and
modifying the current config.

By default ctc will looks for a config file at ~/.config/ctc/config. json. But if the CTC_CONFIG_PATH environ-
ment variable is set, it will use that path instead.

ctc can also function under a “no-config” mode, where ctc setup does not need to be run. To use this mode, simply
set the ETH_RPC_URL to an RPC provider url.

14 Chapter 5. External Data Sources

https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/spec/typedefs
https://github.com/python/typing/tree/master/typing_extensions
https://github.com/fei-protocol/checkthechain/tree/main/tests
https://github.com/fei-protocol/checkthechain-docs
https://github.com/fei-protocol/checkthechain-docs

Check the Chain (ctc)

5.3.2 Config Parameters

The config file consists of key-value pairs. The keys:
» config_spec_version: the ctc version used to create the config
e data_dir: the directory where ctc stores its data
¢ providers: metadata about RPC providers
* networks: metadata about networks including their names and chain_id’s
o default_network: default network to use
¢ default_providers: default provider for each network
¢ db_configs: database configuration information
* log_rpc_calls: whether to log rpc calls
* log_sql_queries: whether to log sql queries

A python type specification for the config can be found in the config typedefs file.

5.3.3 Reading Config Parameters

On the command line, running ctc config will print information about the config including its location on the filesys-
tem and its current values.

In python, the ctc.config module has many functions for getting config data:

from ctc import config

config_path = config.get_config_path()
data_dir = config.get_data_dir(Q)
providers = config.get_providers()

5.4 Changelog

until version 1.0.0 is reached, will use 0.X.Y versioning where X is for breaking changes / major feature upgrades,
and Y is for bug fixes / minor feature upgrades

5.4.1 0.3.0

September 25, 2022

This is a significant release that includes features such as: sql database integration, refactored documentation, stream-
lined syntax, performance optimizations, and many new types of data queries. This release also includes lots of small
bug fixes and quality-of-life improvements not listed below.

5.4. Changelog 15

https://github.com/fei-protocol/checkthechain/blob/main/src/ctc/spec/typedefs/config_types.py

Check the Chain (ctc)

DB

* integrate sql db for storing collected data

* create tables for: blocks, contract abis, contract creation blocks, ERC20 metadata, 4byte signatures, and Chain-
link feeds

* add flags to functions for whether db should be used

* auto-intake collected data into db by default

Documentation

* create external documentation page https://ctc.readthedocs.io/en/latest

CLI

* add help messages and examples to each subcommand

* add color to cli output

* optimize cli startup times

* allow all cli commands to use ens names in place of addresses

* add many subcommands including

storage, limits, encode, proxy, bytecode, chains, selector

— abi decompile command for decoding ABI of solidity and vyper contracts

(see ctc -h for proper full list)
XX do a diff with 3.10?

* add commands for events, candlestick charting

* add --json to many cli commands to output data as json

Config
» make configuration file optional by using a default config and looking for RPC provider in ETH_RPC_URL env
var
* when loading old config versions, attempt to transparently convert it to new config version
* added better config validation

* add shell alias configuration to ctc setup

16 Chapter 5. External Data Sources

Check the Chain (ctc)

Protocols

* new protocol-specific functionality for Gnosis and Etherscan
* add subcommands to previous covered protocols

* use binary search to implement trade-to-price function for Uniswap V3 and other AMMs

Data Operations

* new transaction and call data decoding system
* automatically query proxy ABI when querying a contract’s ABI

— if a function ABI or event ABI cannot be found, re-query contract proxy to check for ABI updates
* add functionality for fetching all transactions of a given address

¢ add functionality for predicting block numbers of future timestamps

Testing

* use tox for testing each python version
* create legacy test environment with minimal version of each dependency
* test that all cli commands have examples and test that the examples work

* enforce many coding conventions using tests

Performance

* utilize caches and concurrency when possible

* add appropriate rate limits for etherscan and 4byte for scraping

Python

* upgrade from setuptools/ setup.py to flit/ pyproject.toml
* use black for all py files in repo

* use strict mode for mypy typing annotations

* reduce number of implicit package dependencies by more than 50%

— fork eth-abi package as eth-abi-lite to remove dependence on eth-abi, eth-utils, toolz and
cytools

— specify min and max version of each dependency to prevent future backwards incompability

5.4. Changelog 17

Check the Chain (ctc)

Other

* add logging system and allow use of ctc log command to follow logs
* populate default data directory with metadata of: 22 networks, >1000 ERC20 tokens, and all Chainlink feeds

¢ add functions for converting block numbers into timestamps for x-axis labels of plots

Upgrade Guide

1. Run pip install -U checkthechain
2. Run ctc setup

3. There are some minor api changes (see below)

API Changes

Version 0.3.0 contains some breaking changes to make the API more consistent and intuitive. Care was taken to
minimize these breaking changes. Future versions of ctc will aim to maximize backward compatilibity as much as
possible.

e config (running ctc setup command will automatically upgrade old config and data directory)

— new config schema using flat structure instead of nested hierarchy (see ctc.spec.typedefs.
config_types)

— new data directory schema that better reflects underlying data relationships (see ctc.config.
upgrade_utils.data_dir_versioning)

e directory deprecated in favor of functions in config, db, and evm
* evm
— decode_function_output () arg: package_named_results —> package_named_outputs
— async_get_proxy_address() —> async_get_proxy_implementation()
— erc20 balance and allowance functions:
% arg address —> wallet
% arg addresses —> wallets
% async_get_erc20_holdings_from_transfers-—>async_get_erc20_balances_from_transfers
% async_get_block_timestamp() modes renamed from before, after, equal to <=, >=, ==
* async_get_erc20_balance_of —> async_get_erc20_balance
% async_get_erc20_balance_of_addresses —> async_get_erc20_balances_of_addresses
% async_get_erc20s_balance_of —> async_get_erc20s_balances
* async_get_erc20_balance_of_by_block —> async_get_erc20_balance_by_block
% async_get_erc20s_allowances_by_address—>async_get_erc20s_allowances_of_addresses
e protocols
— curve_utils.async_get_pool_addresses —> curve_utils.async_get_pool_tokens
— rari_utils.get_pool_tvl_and_tvb —> rari_utils.async_get_pool_tvl_and_tvb

— use for blockwise functions always use by_block rather than per_block

18 Chapter 5. External Data Sources

Check the Chain (ctc)

— uniswap_v2_utils.async_get_pool_swaps —> uniswap_v2_utils.async_get_pool_trades
— functions for querying data from specific DEX’s now all use unified a unified DEX syntax and API
spec
— ConfigSpec —> Config
— PartialConfigSpec —> PartialConfig
— ProviderSpec —> ProviderReference
toolbox

— move toolbox.amm_utils, toolbox.twap_utils, and toolbox.lending_utils under toolbox.
defi_utils

cli
— all commands are standardized on --export rather than --output to specify data export targets

for functions that print out summary information, instead of using a conventions of print_<X>() and
summarize_<X>, use single convention print_X()

only allow positional arguments for the first two arguments of every function

5.4.2 0.2.10

March 26, 2022

add functionality for G-Uni Gelato, multicall
add Fei yield dashboard analytics
add commands for ABI summarization

signficantly improve test coverage

5.4.3 0.2.9

March 18, 2022

add Uniswap V3 functionliaty

improve Chainlink functions, commands, and feed registry
add twap_utils

add cli aliases

many small fixes

handle various types of non-compliant erc20s

5.4. Changelog 19

Check the Chain (ctc)

5.4.4 0.2.8

March 2, 2022

* fix str processing bug

5.4.5 0.2.7

March 2, 2022

* add robustness and quality-of-life improvements to data cache

¢ add 4byte functionality

* add Coingecko functionality

5.4.6 0.2.6

February 24, 2022
* fix many typing annotation issues
¢ add Curve functionality

¢ add Fei functionality

5.4.7 0.2.5

February 16, 2022
* add ENS functionality
¢ add hex, ascii, checksum, and lower cli commands

* add Rari lens
5.4.8 0.2.4
February 15, 2022
* python 3.7 compatibility fixes

5.4.9 0.2.3

February 14, 2022
* add many cli commands

* refactor existing cli commands

20

Chapter 5. External Data Sources

Check the Chain (ctc)

5.4.10 0.2.2

February 11, 2022
¢ add python 3.7 and python3.8 compatibility

5.4.11 0.21

February 9, 2022

initial public ctc release

5.5 FAQ

5.5.1 What are the goals of ctc?
* Treat historical data as a first-class feature: This means having historical data functionality well-integrated
into each part of the of the APL. It also means optimizing the codebase with historical data workloads in mind.
* Protocol-specific functionality: This means having built-in support for popular on-chain protocols.

* Terminal-based block explorer: This means supporting as many block explorer tasks as possible from the
terminal. And doing so in a way that is faster than can be done with a web browser.

* Clean API emphasizing UX: With ctc most data queries can be obtained with a single function call. No need
to instantiate objects. RPC inputs/outputs are automatically encoded/decoded by default.

* Maximize data accessibility: Blockchains contain vast amounts of data, but accessing this data can require large
amounts of time, effort, and expertise. ctc aims to lower the barrier to entry on all fronts.

5.5.2 Why use async?
async is a natural fit for efficiently querying large amounts of data from an archive node. All ctc functions that fetch

external data use async. For tips on using async see his section in the docs. Future versions of ctc will include some
wrappers for synchronous code.

5.5.3 Do | need an archive node?

If you want to query historical data, you will need an archive node. You can either run one yourself or use a third-party
provider such as Alchemy, Quicknode, or Moralis. You can also use ctc to query current (non-historical) data using a
non-archive node.

5.5.4 Is ctc useful for recent, non-historical data?

Yes, ctc has lots of functionality for querying the current state of the chain.

5.5. FAQ 21

https://github.com/ledgerwatch/erigon
https://www.alchemy.com/
https://www.quicknode.com/
https://moralis.io/speedy-nodes/

Check the Chain (ctc)

5.6 Obtaining Data

ctc collects data from a variety of sources, including RPC nodes, metadata databases, block explorers, and market
data aggregators. After initial collection, much of this data is then stored.

5.6.1 Sources of Historical Data

ctc collects the majority of its data from RPC nodes using the EVM’s standard JSON-RPC interface. Collection of
historical data (as opposed to recent data) requires use of an archive node.

There are 3 main ways to gain access to an RPC node:

1. Run your own node: Although this requires more time, effort, and upfront cost than the other methods, it often
leads to the best results. Erigon is the most optimized client for running an archive node.

2. Use a 3rd-party private endpoint: Private RPC providers (e.g. Alchemy, Quicknode, or Moralis) provide
access to archive nodes, either through paid plans or sometimes even through free plans.

3. Use a 3rd-party public endpoint: You can query data from public endpoints like Infura. This approach is not
recommended for any significant data workloads, as it often suffers from rate-limiting and poor historical data
availability.

ctc’s RPC config is created and modified by running the setup wizard.

5.6.2 Other types of data

Beyond RPC data there are other types of data that ctc collects, including:
* ABISs of Contracts, Functions, and Events from Etherscan and 4byte

¢ Market Data from Defil.lama and CoinGecko

5.7 Storing Data

ctc places much of the data that it retreives into local storage. This significantly improves the speed at which this data
can be retrieved in the future and it also reduces the future load on data sources.

The default configuration assumes that most data is being queried from a remote RPC node. Some performance-minded
setups, such as running ctc on the same server as an archive node, might achieve better tradeoffs between speed and
storage space by tweaking ctc’s local storage features.

5.7.1 Data Storage Backends

ctc uses two main storage backends.

22 Chapter 5. External Data Sources

https://eth.wiki/json-rpc/API
https://github.com/ledgerwatch/erigon
https://www.alchemy.com/
https://www.quicknode.com/
https://moralis.io/speedy-nodes/
https://etherscan.io/
https://www.4byte.directory/
https://defillama.com/
https://coingecko.com/

Check the Chain (ctc)

Filesystem

ctc stores some files on the filesystem. By default, ctc will place its data folder in the user’s home directory at
~/ctc_data. This is suitable for many setups. However, there are situations where it would be better to store data
somewhere else, such as if the home directory is on a drive of limited size, or it the home directory is on a network
drive with significant latency. The data directory can be moved by running the setup wizard ctc setup.

Total storage usage of ctc on the filesystem can be found by checking the size of the ctc data directory.

SQL Databases

ctc also stores lots of data in SQL database tables. Schemas for these tables can be found here. ctc currently supports
sqlite with Postgresql support coming soon.

Total storage usage of ctc in the database can be found by running ctc db -v in the terminal.

You can connect to the currently configured database by running ctc db login in the terminal. Don’t do this unless
you know what you’re doing.

5.8 Performance

TLDR

Even in suboptimal conditions, ctc uses optimizations that allow running many types of workloads at acceptable levels
of performance. This page is for those who wish to squeeze additional performance out of ctc.

5.8.1 Optimizing Performance

There are many levers and knobs available for tuning ctc’s performance.

RPC Provider
Different 3rd party RPC providers can vary significantly in their reliability and speed. For example, some providers
have trouble with large historical queries.

Operations in ctc that fetch external data are usually bottlenecked by the RPC provider, specifically the latency to the
RPC provider. This latency can be reduced by running ctc as closely as possible to the archive node:

* Fastest = running ctc on the same server that is running the archive node
* Fast = running ctc on the same local network as the archive node
» Slower = running ctc in the same geographic region as the archive node
 Slowest = running ctc in a different geographic region than the archive node
If using a 3rd party RPC provider, you should inquire about where their nodes are located and plan accordingly.

ctc’s default configuration assumes that the user is querying an RPC node on a remote network. This leads ctc to
locally store much of the data that it retrieves. However, it’s possible that alternate settings might be optimal in different
contexts. For example if ctc is run on the same server as an archive node, then it’s possible that certain caches might
hurt more than they help. Cache settings are altered using ctc setup on the command line.

5.8. Performance 23

https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/db/schemas

Check the Chain (ctc)

Python Versions
More recent versions of python are generally faster. Upgrading to the latest python version is one of the easiest ways to

improve code performance. In particular, the upcoming python 3.11 has much faster startup times and shows improve-
ment across many benchmarks. This will make ctc’s cli commands feel especially quick and responsive.

Python Packages

By default, ctc tries to minimize its dependencies and minimize the number of build steps that happen during instal-
lation. This does carry a bit of performance cost. Faster versions of various packages can be installed using:

pip install checkthechain[performance]

If ctc detects that these additional performance packages are installed, it will use those instead of the default packages.
This can produce a modest performance increase for some workloads.

Data Storage

ctc’s default data directory is ~/.config/ctc/ in the user’s home directory. If this directory is on a slow drive
(especially a network drive), this will negatively impact performance. To optimize performance, place the data directory
on as fast a drive as possible. This can be done by running the setup wizard ctc setup.

Data Caching

For tasks that require many RPC requests, or require lots of post-processing (or are demanding in other ways), you
should consider caching the result in-memory or on-disk. One way to do this is with the toolcache package. With
toolcache a simple decorator adds an in-memory or on-disk cache to the expensive function.

For example, if you are using ctc to create data payloads for a historical analytics dashboard, you might use a pattern
similar to this:

import toolcache

async def create_data_payload(timestamps):
return [
compute_timestamp_stats(timestamp=timestamp)
for timestamp in timestamps

create an on-disk cache entry for each timestamp

@toolcache.cache('disk"')

async def compute_timestamp_stats(timestamp):
super_expensive_operation()

24 Chapter 5. External Data Sources

https://github.com/sslivkoff/toolcache

Check the Chain (ctc)

Logging

Logging of RPC requests and SQL queries consumes a non-zero amount of resources. If you don’t need logging,
disabling it can squeeze out a bit of extra performance. This can be done by running the setup wizard ctc setup.

5.8.2 Benchmarking Performance

To truly optimize your environment and implementation, you will need to run your own benchmarks.

Benchmarking Speed

The simplest way to benchmark the speed of a CLI command is time. Running time <command> will run a given
command and report the run time.

Benchmarking the speed of python code snippets is slightly more complicated but also has many tools available:

1. Synchronous code can be easily profiled used IPython’s built-in magics %timeit, %%timeit, %prun, and
%%kprun

2. If using a Jupyter notebook, the Execute Time extension can be extremely useful for getting a crude estimate of
how long each code cell takes to run. This works for both synchronous and asynchronous code.

3. For a more programmatic approach you can use python’s built-in profilers or 3rd party profilers such as Scalene
or pyflame.

Measuring Storage Usage

It is also valuable to measure ctc’s storage usage to check whether it falls into an acceptable range for a given hardware
setup. Storage usage in the ctc data folder can be found by running a storage profiling command like du -h or dust.
Storage usage in databases can be found by running ctc db -v.

5.9 Monitoring

5.9.1 Logging

ctc can log outgoing RPC requests and SQL queries. This functionality can be enabled or disabled using ctc setup.
Logs are stored in 1logs subdirectory of the ctc data dir (default = ~/ctc_data).

Running ctc log in the terminal will begin watching for changes to the log files. This provides a detailed view of
external queries as they happen, which can be useful for debugging and ensuring that external calls are happening as
expected.

Logs are written to disk using a non-blocking queue, making it suitable for async applications and imparting minimal
impact on performance. These logs are also rotated once they reach a certain size (default = 10MB). However, being
non-blocking also means that the timestamps in the logs lose a bit of temporal precision, and so they do not provide a
precise picture of event timing.

Logs are managed by the Loguru package. Loguru must be installed for logging to be enabled (pip install loguru).

5.9. Monitoring 25

https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/execute_time/readme.html
https://docs.python.org/3/library/profile.html
https://github.com/plasma-umass/scalene
https://github.com/uber-archive/pyflame
https://github.com/bootandy/dust
https://github.com/Delgan/loguru

Check the Chain (ctc)

5.9.2 Other monitoring

Beyond the built-in logging, the best way to monitor ctc is through standard 3rd party tools.
Recommended utilities for profiling resource usage:

e CPU Usage: htop, btop

* Storage I0O: iotop, btop

¢ Storage Capacity: du, dust, btop

* Network Usage: nethogs, btop

If your situation calls for a more programmatic monitoring approach, then you probably already know what tools you
need.

5.10 Basic Usage

The ctc cli command performs operations related to processing EVM data, especially operations related to historical
data analysis. Many different EVM datasets can be generated by individual calls to ctc.

Typical usage is ctc <subcommand> [options], using Subcommands. To view the complete list of subcommands
use ctc -h.

Most of the cli documentation pages are copied from ctc’s in-terminal help messages.

5.11 Subcommands

Note: Click on a subcommand to view its documentation page.

5.11.1 Admin Subcommands

Note: Click on a subcommand to view its documentation page.

aliases
chains
config
db

log

26 Chapter 5. External Data Sources

https://htop.dev/
https://github.com/aristocratos/btop
https://man7.org/linux/man-pages/man8/iotop.8.html
https://github.com/aristocratos/btop
https://www.man7.org/linux/man-pages/man1/du.1.html
https://github.com/bootandy/dust
https://github.com/aristocratos/btop
https://github.com/raboof/nethogs
https://github.com/aristocratos/btop
./subcommands.html

Check the Chain (ctc)

setup

5.11.2 Compute Subcommands

Note: Click on a subcommand to view its documentation page.

ascii
checksum
create address
decode
decode call
encode
hex

int

keccak
limits
lower

rip encode

selector

5.11.3 Data Subcommands

Note: Click on a subcommand to view its documentation page.

abi

abi diff

address

address txs

block

blocks

5.11. Subcommands 27

Check the Chain (ctc)

bytecode

call

call all

calls

chain
decompile
dex chart

dex pool

dex pools

dex trades
erc20

erc20 balance
erc20 balances
erc20 transfers
eth balance
eth balances
events

gas

proxy

proxy register
storage
symbol
timestamp

tx

5.11.4 Protocol Subcommands

Note: Click on a subcommand to view its documentation page.

28 Chapter 5. External Data Sources

Check the Chain (ctc)

4byte

4byte build
aave

aave addresses
cg

chainlink
chainlink feeds
curve pools
ens

ens exists

ens hash

ens owner

ens records
ens resolve
ens reverse
etherscan

fei analytics

fei depth

fei dex

fei pcv

fei pcv assets
fei pcv deposits
fei psms
gnosis

llama

llama chain

5.11. Subcommands

29

Check the Chain (ctc)

llama chains
llama pool
llama pools
llama protocol
llama protocols
rari

rari pools
uniswap burns
uniswap chart
uniswap mints
uniswap pool
uniswap swaps
yearn

yearn addresses

5.11.5 Other Subcommands

Note: Click on a subcommand to view its documentation page.

cd
help

version

5.12 Useful Aliases

ctc makes it simple to perform many tasks from the command line. However, ctc can be made even more simple by
using shell aliases that reduce the number of required keystrokes that must be typed. The ctc codebase includes an
optional set of cli aliases for this purpose.

Such aliases make it so you do not need to type the “ctc” before a subcommand name. For example, instead of typing
ctc keccak <address>, you just type keccak <address>. Instead of typing ctc 4byte <query>, you just type
4byte <query>. And so on, for many different ctc subcommands.

The ctc setup wizard can add these aliases to your shell configuation.

30 Chapter 5. External Data Sources

Check the Chain (ctc)

5.12.1 The Aliases

These aliases are chosen so as not to conflict with any common CLI tools.

compute commands

alias ascii="ctc ascii”
alias hex="ctc hex"

alias keccak="ctc keccak"
alias lower="ctc lower"

data commands

alias abi="ctc abi"

alias address="ctc address"
alias block="ctc block"
alias blocks="ctc blocks"
alias bytecode="ctc bytecode"
alias call="ctc call"

alias calls="ctc calls"
alias dex="ctc dex"

alias erc20="ctc erc20"
alias eth="ctc eth"

alias gas="ctc gas"

alias int="ctc int"

alias rlp="ctc rlp"

alias tx="ctc tx"

protocol commands

alias 4byte="ctc 4byte"
alias aave="ctc aave"

alias cg="ctc cg"

alias chainlink="ctc chainlink"
alias curve="ctc curve"
alias es="ctc etherscan"
alias ens="ctc ens"

alias fei="ctc fei"

alias gnosis="ctc gnosis"
alias llama="ctc llama"
alias rari="ctc rari"

alias uniswap="ctc uniswap"
alias yearn="ctc yearn"

5.13 Similar CLI tools

5.13.1 ethereum-etl

ethereum-etl is a tool for collecting raw historical data from EVM chains, including blocks, transactions, erc20 transfers,
and internal traces. Along with the rest of the blockchain-etl stack, it powers the popular BigQuery blockchain datasets.
The primary use case of ethereum-etl and its associated stack is to index a significant portion of a chain’s history in
preparation for large scale data analysis.

Prior to creating ctc, ethereum-etl was the primary data collection tool used by ctc’s authors. It was extensive use
of ethereum-etl that inspired much of ctc’s design. Compared to ethereum-etl, ctc falls closer to the porcelain

5.13. Similar CLI tools 31

https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl
https://cloud.google.com/blog/products/data-analytics/introducing-six-new-cryptocurrencies-in-bigquery-public-datasets-and-how-to-analyze-them

Check the Chain (ctc)

end of the plumbing-vs-porcelain spectrum, with goals such as:
* create more diverse datasets, such as datasets that rely on eth_call
* create more targeted datasets, such as datasets focused on specific protocols like Chainlink or Uniswap
* create tighter integration with the python ecosystem
» go beyond data collection by creating a data analysis toolkit that serves each stage of the data analysis lifecycle
» implement quality-of-life improvements for the lazy
— store and manage metadata such as addresses of tokens, oracles, and pools

— automate tasks such as data encoding/decoding

5.13.2 TrueBlocks

TrueBlocks is a tool for managing optimized local indices of EVM chain data. TrueBlocks then makes these local data
copies accessible through an enhanced RPC interface. TrueBlocks delivers some of the highest performance ways to
query chain data and it excels at tracing and querying all appearances of a given address throughout a chain’s history.
Since TrueBlocks can provide its data over RPC, it could be used as an ultra high performance RPC provider for ctc.

There’s a decent amount of overlap between ethereum-etl, TrueBlocks, and ctc. Relatively speaking,
ethereum-etl is plumbing, TrueBlocks is mostly plumbing with some porcelain, and ctc is mostly porcelain with
some plumbing.

5.13.3 ethereal, seth, and cast
ethereal (go), seth (dapptools, bash+javascript), and cast (foundry, rust) are powerful command line utilities that each
perform a wide range of EVM-related tasks.

ctc has lots of overlapping functionality with each. Where they differ is their focus. These other tools are more aimed
at smart contract development, whereas ctc is more aimed at data collection and analysis. Compared to these tools,
ctc’s biggest disadvantage is that it is limited to read-only operations. On the other hand ctc’s biggest advantage is
its treatment of historical data as a first class feature.

5.14 Basic Usage

The top-level ctc module contains functions for generic EVM operations:

Example: Generic EVM Operations

import ctc
some_hash = ctc.keccak_text('hello")
encoded_data = ctc.abi_encode_packed((400, 6000), '(intl28,intl128)")

eth_balance = await ctc.async_get_eth_balance('0x6b175474e89094c44da98h954eedeac495271d0£
D

erc20_balance = await ctc.async_get_erc20_balance(
token="'0x6b175474e89094c44da98b954eedeac495271d0f",
wallet="0x6b175474e89094c44da98b954eedeac495271d0£f'],

(continues on next page)

32 Chapter 5. External Data Sources

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain
https://github.com/TrueBlocks/trueblocks-core
https://github.com/wealdtech/ethereal
https://github.com/dapphub/dapptools/tree/master/src/seth
https://github.com/dapphub/dapptools
https://book.getfoundry.sh/reference/cast.html
https://github.com/gakonst/foundry

Check the Chain (ctc)

(continued from previous page)

block=15000000,

events = await ctc.async_get_events(
'0xcbcdf9626bc03e24£779434178a73a0b4bad6b2ed’,
event_name='Swap',

Some points to keep in mind while using ctc:

¢ ctcuses functional programming. Instead of custom types or OOP, ctc uses simple standard datatypes including
python builtins and numpy arrays. There is no need to initialize any objects. Simply import ctc and then call
functions in the ctc.* namespace.

* ctc is asynchronous-first, which allows it to efficiently orchestrate large numbers of interdependent queries.
Special consideration is needed to run code in an asynchronous context.

¢ ctcis designed with historical data analysis in mind. For any query of EVM state, ctc aims to support historical
versions of that query. Most ctc query functions take parameters that can specify a block or block range relevant
to the query.

The top-level ctc package covers generic EVM operations, which are described in more detail /ere. There are also a
few other ctc subpackages that are relevant to specific use-cases described below.

5.14.1 RPC Client Subpackage ctc.rpc

ctc.rpcimplements ctc’s custom RPC client. This client can be used for fine-grained control over RPC calls. Unless
explcitly told not to do so.ctc will automatically encode requests to binary and decode requests from binary.

Example: get bytecode for contract, at specific block, using specific provider

import ctc.rpc

contract_bytecode = await ctc.rpc.async_eth_get_code(
'0x6b175474e89094c44da98b954eedeac495271d0f ",
block_number=15000000,
provider="https://some_rpc_node/",

5.14.2 Protocol-specific Subpackages ctc.protocols

ctc.protocols contains functions specific to many different protocols such as Chainlink or Uniswap. See a full list
here.

Example: gather complete historical data for Chainlink’s RAI-USD feed

from ctc.protocols import chainlink_utils

feed_data = await chainlink_utils.async_get_feed_data('RAI_USD")

5.14. Basic Usage 33

Check the Chain (ctc)

5.14.3 Other Subpackages

End users of ctc probably won’t need to use any of these directly.
e ctc.cli: command line interface
e ctc.config: configuration utilities
* ctc.db: local cache database
* ctc.spec: ctc specifications, mainly types for type annotations

e ctc.toolbox: miscellaneous python utilities

5.15 RPC Client

ctc.rpcisalow-level asynchronous RPC client that implements the EVM JSON-RPC standard. This standard consists
of many methods such as eth_call and eth_getCode that query current and historical states of an EVM chain.

5.15.1 Implementation of Methods

For every method specified by the EVM JSON-RPC standard, ctc.rpc implements five python functions:
1. constructor function: create method requests
2. digestor function: process method responses
3. executor function: perform construction, dispatching, and digestion all in one step
4. batch construct: create method requests in bulk
5. batch execute: execute method requests in bulk

(there are no batch digestor functions because they compose naturally from the scalar digestor functions)

5.15.2 RPC Providers
Unless otherwise specified, requests will be sent to the default RPC provider in ctc’s config. Functions in ctc.rpc
that send RPC requests also take an optional provider argument that can be used to specify other RPC providers.

For more details, see the RPC Provider section on the Data Sources page.

5.15.3 Typical RPC Request Lifecycle in ctc

1. a constructor function encodes request metadata and parameters into a RpcRequest python dict
2. the request is dispatched to an rpc provider using rpc.async_send_http()

3. the client awaits until the rpc provider returns a response

4. adigestor function decodes the response

For requests that execute contract code (like eth_call) or retrieve events (like eth_getLogs), ctc will encode/decode
inputs/outputs using the relevant function abi’s and event abi’s.

34 Chapter 5. External Data Sources

https://eth.wiki/json-rpc/API

Check the Chain (ctc)

5.16 Asynchronous Code

ctc uses async functions for network calls and database calls. This allows for high levels of concurrency and makes
it easy to dispatch large numbers of complex interdependent queries.

async is an intermediate-level python topic with a bit of a learning curve. If you’ve never used async before, you
should probably read a tutorial or two before trying to use it in ctc. To use async functions, they must be run from an
event loop. These functions can be called from synchronous code as follows:

import asyncio

result = asyncio.run(some_async_function(inputl, input2))

Inside of IPython or Jupyter notebooks, await can be used directly, without asyncio.run(). Many of the code
examples in these docs assume this is the context and omit asyncio.run().

no asyncio.run() necessary inside of IPython / Jupyter
result = await some_async_function(inputl, input2)

If your code opens up network connections, you should also close those connections at the end of your script. For
example:

from ctc import rpc

await rpc.async_close_http_session()

5.17 Datatypes

ctc has functions for collecting and analyzing many different EVM datatypes

Datatype Examples Reference
ABIs Examples Reference
Addresses Examples Reference
Binary Examples Reference
Blocks Examples Reference
ERC20s Examples Reference
ETH Examples Reference
Events Examples Reference
Transactions Examples Reference

5.17.1 ABls

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

5.16. Asynchronous Code 35

datatypes/abis.html
datatypes/abis.html#examples
datatypes/abis.html#reference
datatypes/addresses.html
datatypes/addresses.html#examples
datatypes/addresses.html#reference
datatypes/binary_data.html
datatypes/binary_data.html#examples
datatypes/binary_data.html#reference
datatypes/blocks.html
datatypes/blocks.html#examples
datatypes/blocks.html#reference
datatypes/erc20s.html
datatypes/erc20s.html#examples
datatypes/erc20s.html#reference
datatypes/eth_balances.html
datatypes/eth_balances.html#examples
datatypes/eth_balances.html#reference
datatypes/events.html
datatypes/events.html#examples
datatypes/events.html#reference
datatypes/transactions.html
datatypes/transactions.html#examples
datatypes/transactions.html#reference
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/abis.ipynb

Check the Chain (ctc)

Reference

async ctc.evm.async_decompile_function_abis(bytecode, sort=None)
decompile solidity-style function ABI’s from contract bytecode

Return type
Sequence[Mapping[str, Any]]

async ctc.evm.async_get_contract_abi (contract_address, *, network=None, provider=None, use_db=True,
db_query=None, db_intake=None, block=None,
proxy_implementation=None, verbose=True)

retrieve abi of contract either from local database or block explorer
for addresses that change ABI’s over time, use db_query=False to skip cache

async ctc.evm.async_get_event_abi (¥, contract_abi=None, contract_address=None, event_name=None,
event_hash=None, event_abi=None, network=None)

get event ABI from local database or block explorer

async ctc.evm.async_get_function_abi (*, function_name=None, contract_abi=None,
contract_address=None, n_parameters=None,
parameter_types=None, function_selector=None, network=None)

get function ABI from local database or block explorer

ctc.binary.get_event_hash ctc.binary.get_event_indexed_names ctc.binary.get_event_indexed_types
ctc.binary.get_event_signature ctc.binary.get_event_unindexed_names ctc.binary.get_event_unindexed_types
ctc.binary.get_function_output_names ctc.binary.get_function_output_types ctc.binary.get_function_parameter_names
ctc.binary.get_function_parameter_types ctc.binary.get_function_selector ctc.binary.get_function_signature

5.17.2 Contracts

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.evm.async_get_contract_creation_block(contract_address, *, provider=None, use_db=True,
**search_kwargs)

get block number of when contract was created

* behavior is undefined for functions that have undergone SELF-DESTRUCT(S)

¢ caches result in local database

36 Chapter 5. External Data Sources

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/addresses.ipynb

Check the Chain (ctc)

5.17.3 Binary Data

Note: By default ctc will perform end-to-end encoding/decoding of many operations. The low-level functions listed
here are only needed if you need to work directly with raw binary data.

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

Reference

[none]

autofunction:: ctc.binary.convert .. autofunction:: ctc.binary.decode_call_data .. autofunc-
tion:: ctc.binary.decode_function_output .. autofunction:: ctc.binary.decode_types .. autofunction::
ctc.binary.encode_call_data .. autofunction:: ctc.binary.encode_types .. autofunction:: ctc.binary.keccak
.. autofunction:: ctc.binary.keccak_text

5.17.4 Blocks

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.evm.async_get_block(block, *, include_full_transactions=False, provider=None, use_db=True)
get block from local database or from RPC node

async ctc.evm.async_get_block_of_timestamp (timestamp, *, nary=None, cache=None,
block_timestamps=None, block_timestamp_array=None,
block_number_array=None, verbose=False,
provider=None, use_db=True, use_db_assist=True,
mode=">=")

search for the block that corresponds to a given timestamp

5.17. Datatypes 37

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/binary_data.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/blocks.ipynb

Check the Chain (ctc)

async ctc.evm.async_get_blocks(blocks, *, include_full_transactions=False, chunk_size=500,
provider=None, use_db=True, latest_block_number=None)

get blocks from local database or from RPC node

async ctc.evm.async_get_blocks_of_timestamps (timestamps, *, block_timestamps=None,
block_number_array=None,
block_timestamp_array=None, nary=None, cache=None,
provider=None, use_db=True, mode=">=")

search for blocks corresponding to list of timestamps

5.17.5 ERC20s

Note: functions that require multiple RPC calls will attempt to do so concurrently for maximum efficiency

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.evm.async_get_erc20_balance(wallet, token, *, block=None, normalize=True, provider=None,
**rpc_kwargs)

get ERC20 balance

async ctc.evm.async_get_erc20_balances_of_addresses(wallets, token, *, block=None, normalize=True,
provider=None, **rpc_kwargs)

get ERC20 balance of multiple addresses

async ctc.evm.async_get_erc20_balance_by_block(wallet, token, *, blocks, normalize=True,
provider=None, empty_token=0, **rpc_kwargs)

get historical ERC20 balance over multiple blocks

async ctc.evm.async_get_erc20_decimals (token, *, block=None, use_db=True, provider=None,
**rpc_kwargs)

get decimals of an erc20

async ctc.evm.async_get_erc20_balances_from_transfers (transfers, *, block=None, dtype=None,
normalize=False)

compute ERC20 balance of each wallet using Transfer events

async ctc.evm.async_get_erc20_name (token, *, block=None, use_db=True, provider=None, **rpc_kwargs)
get name of an erc20

38 Chapter 5. External Data Sources

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/erc20s.ipynb

Check the Chain (ctc)

async ctc.evm.async_get_erc20_symbol (token, *, block=None, use_db=True, provider=None,
**rpe_kwargs)

get symbol of an erc20

async ctc.evm.async_get_erc20_total_supply (token, *, block=None, normalize=True, provider=None,
**rpc_kwargs)

get total supply of ERC20

async ctc.evm.async_get_erc20_total_supply_by_block(token, blocks, *, normalize=True,
provider=None, **rpc_kwargs)

get historical total supply of ERC20 across multiple blocks

async ctc.evm.async_get_erc20_transfers (token, *, start_block=None, end_block=None, start_time=None,
end_time=None, include_timestamps=False, normalize=True,
convert_from_str=True, verbose=False, provider=None,
**event_kwargs)

get transfer events of ERC20 token

async ctc.evm.async_get_erc20s_balances (wallet, tokens, *, block=None, normalize=True, provider=None,
**rpe_kwargs)

get ERC20 balance of wallet for multiple tokens

async ctc.evm.async_get_erc20s_decimals (tokens, *, block=None, **rpc_kwargs)
get decimals of multiple erc20s

async ctc.evm.async_get_erc20s_names (fokens, block=None, **rpc_kwargs)
get name of multiple erc20s

async ctc.evm.async_get_erc20s_symbols (tokens, *, block=None, **rpc_kwargs)
get symbol of multiple erc20s

async ctc.evm.async_get_erc20s_total_supplies(tokens, *, block=None, normalize=True, provider=None,
*krpe_kwargs)

get total supplies of ERC20s

async ctc.evm.async_normalize_erc20_quantities(quantities, token=None, *, provider=None,
decimals=None, block=None)

normalize ERC20 quantites by adjusting radix by (10 ** decimals)

async ctc.evm.async_normalize_erc20_quantity(quantity, token=None, *, provider=None,
decimals=None, block=None)

convert raw erc20 quantity by adjusting radix by (10 ** decimals)

5.17.6 ETH Balances

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

5.17. Datatypes 39

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/eth_balances.ipynb

Check the Chain (ctc)

Reference
5.17.7 Events

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference
async ctc.evm.async_get_events (contract_address, *, start_block=None, end_block=None, start_time=None,

end_time=None, include_timestamps=False, backend_order=None,
keep_multiindex=True, verbose=True, provider=None, **query)

get events matching given inputs

5.17.8 Transactions

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

Reference

async ctc.evm.async_get_transaction(transaction_hash)

get transaction

async ctc.evm.async_get_transaction_count (address)

get transaction count of address

5.18 Specific Protocols

ctc has functions for collecting and analyzing data from many on-chain and off-chain sources

40 Chapter 5. External Data Sources

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/events.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/datatypes/transactions.ipynb

Check the Chain (ctc)

5.18.1 4byte

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

Reference

async ctc.protocols. fourbyte_utils.async_build_event_signatures_dataset (signature_data=None)

Return type
None

async ctc.protocols. fourbyte_utils.async_build_function_signatures_dataset (signature_data=None)

Return type
None

async ctc.protocols. fourbyte_utils.async_query_event_signatures (hex_signature=None, *,
id=None, bytes_signature=None,
text_signature=None,
use_local=True,
use_remote=True)

Return type
Sequence[Entry]

async ctc.protocols. fourbyte_utils.async_query_function_signatures (hex_signature=None, *,
id=None,
bytes_signature=None,
text_signature=None,
use_local=True,
use_remote=True)

Return type
Sequence[Entry]

5.18.2 Aave V2

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

5.18. Specific Protocols 41

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/4byte.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/aave_v2.ipynb

Check the Chain (ctc)

Reference

async

ctc.protocols.

aave_v2_utils.

async_get_deposits(*, start_block=None, end_block=None,
start_time=None, end_time=None,
include_timestamps=False, provider=None)

async ctc.protocols.aave_v2_utils.async_get_interest_rates(*, roken=None, block=None,
reserve_data=None)
async ctc.protocols.aave_v2_utils.async_get_interest_rates_by_block(token, blocks, *, re-
serve_data_by_block=None)

async ctc.protocols.aave_v2_utils.async_get_reserve_data(asset, block=None, *, provider=None)

async ctc.protocols.aave_v2_utils.async_get_reserve_data_by_block(asset, blocks, *,
provider=None)

async ctc.protocols.aave_v2_utils.async_get_underlying_asset (pool_token, provider=None)

async ctc.protocols.aave_v2_utils.async_get_withdrawals(*, start_block=None, end_block=None,

start_time=None, end_time=None,
include_timestamps=False,
provider=None)

5.18.3 Balancer

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.protocols.balancer_utils.async_get_pool_address(pool_id, block=None)

ctc.protocols.balancer_utils.async_get_pool_balances(*, pool_address=None, pool_id=None,
block=None, vault=None,

normalize=True, provider=None)

async

ctc.protocols

async .balancer_utils.async_get_pool_fees(pool_address, *, block='"latest’,

normalize=True)
async

ctc.protocols.balancer_utils.async_get_pool_id(pool_address, block=None, *, provider=None)

async ctc.protocols.balancer_utils.async_get_pool_swaps (pool_address=None, *, start_block=None,
end_block=None, start_time=None,
end_time=None,

include_timestamps=False)

42 Chapter 5. External Data Sources

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/balancer.ipynb

Check the Chain (ctc)

async ctc.protocols.balancer_utils.async_get_pool_tokens (*, pool_address=None, pool_id=None,
block=None)

async ctc.protocols.balancer_utils.async_get_pool_weights (pool_address, block='"latest’, *,
normalize=True)

async ctc.protocols.balancer_utils.async_get_pool_weights_by_block(pool_address, blocks, *,
normalize=True)

async ctc.protocols.balancer_utils.async_summarize_pool_state(pool_address, block='latest")

5.18.4 Chainlink

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.protocols.chainlink utils.async_print_feed_summary (feed, *, start_block=None,
n_recent=None, verbose=Fualse)

5.18.5 Compound

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

Reference

async ctc.protocols.compound_utils.async_get_borrow_apy (ctoken, block=None)
async ctc.protocols.compound_utils.async_get_borrow_apy_by_block(ctoken, blocks)
async ctc.protocols.compound_utils.async_get_supply_apy (ctoken, block=None)

async ctc.protocols.compound_utils.async_get_supply_apy_by_block(croken, blocks)

5.18. Specific Protocols

43

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/chainlink.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/compound.ipynb

Check the Chain (ctc)

5.18.6 Gnosis Safe

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

5.18.7 Curve

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.protocols.curve_utils.async_get_base_pools(*, start_block=None, end_block=None,
start_time=None, end_time=None,
factory=None, provider=None, verbose=False)

async ctc.protocols.curve_utils.async_get_meta_pools(*, start_block=None, end_block=None,
start_time=None, end_time=None,
factory=None, provider=None, verbose=False)

async ctc.protocols.curve_utils.async_get_plain_pools(*, factory=None, start_block=None,
end_block=None, start_time=None,
end_time=None, provider=None,
verbose=False)

async ctc.protocols.curve_utils.async_get_pool_metadata(pool, *, n_tokens=None, provider=None)

async ctc.protocols.curve_utils.async_get_pool_state(pool, *, n_tokens=None, block=None,
provider=None, normalize=True)

async ctc.protocols.curve_utils.async_get_virtual_price(pool, *, provider=None, block=None)

44 Chapter 5. External Data Sources

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/coingecko.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/curve.ipynb

Check the Chain (ctc)

5.18.8 Gnosis Safe

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

5.18.9 ENS

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.protocols.ens_utils.async_get_expiration(name)

Return type
int

async ctc.protocols.ens_utils.async_get_owner (name, *, provider=None, block=None)
async ctc.protocols.ens_utils.async_get_registration_block(name)

Return type
int

async ctc.protocols.ens_utils.async_get_registrations()
async ctc.protocols.ens_utils.async_get_text_records(*, name=None, node=None, keys=None)
https://docs.ens.domains/ens-improvement-proposals/ensip-5-text-records

Return type
dict[str, str]

async ctc.protocols.ens_utils.async_record_exists(name, *, provider=None, block=None)
async ctc.protocols.ens_utils.async_reverse_lookup (address, *, provider=None, block=None)

ctc.protocols.ens_utils.hash_name (name)

5.18. Specific Protocols 45

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/etherscan.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/ens.ipynb
https://docs.ens.domains/ens-improvement-proposals/ensip-5-text-records

Check the Chain (ctc)

5.18.10 Fei

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

Reference

async ctc.protocols.fei_utils.async_create_payload(*, blocks=None, timestamps=None,
timescale=None, end_time=None,
window_size=None, interval_size=None,
provider=None)

create data payload from scratch

async ctc.protocols.fei_utils.async_get_pcv_stats(block=None, *, wrapper=False, provider=None)

async ctc.protocols.fei_utils.async_get_pcv_stats_by_block(blocks, *, wrapper=False,
provider=None, nullify_invalid=True)

async ctc.protocols.fei_utils.async_print_pcv_assets (block=None)

async ctc.protocols.fei_utils.async_print_pcv_deposits(block=None)

5.18.11 Gnosis Safe

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

5.18.12 Defi Llama

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

46 Chapter 5. External Data Sources

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/fei.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/gnosis_safe.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/llama.ipynb

Check the Chain (ctc)

5.18.13 Multicall

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

5.18.14 Rari

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run().

Reference

async ctc.protocols.rari_utils.async_get_all_pools(block=None, provider=None)

async ctc.protocols.rari_utils.async_get_ctoken_state(cioken, *, block='latest’, metrics=None,
eth_price=None, in_usd=True)

async ctc.protocols.rari_utils.async_get_ctoken_state_by_block(ctoken, blocks, *, metrics=None,
eth_price=None, in_usd=True)

async ctc.protocols.rari_utils.async_get_pool_ctokens (comptroller, *, block='"latest")

async ctc.protocols.rari_utils.async_get_pool_prices(*, oracle=None, ctokens=None,
comptroller=None, block='latest',
to_usd=True)

async ctc.protocols.rari_utils.async_get_pool_tvl_and_tvb (*, comptroller=None, ctokens=None,
oracle=None, block="latest")

async ctc.protocols.rari_utils.async_get_pool_underlying_tokens (*, ctokens=None,
comptroller=None,
block='latest")

async ctc.protocols.rari_utils.async_get_token_multipool_stats(token, block='latest’, *,
in_usd=True)

async ctc.protocols.rari_utils.async_print_all_pool_summary (block='"latest', n_display=15)

async ctc.protocols.rari_utils.async_print_fuse_token_summary (roken, *, block='latest’,
in_usd=True)

5.18. Specific Protocols 47

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/multicall.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/rari.ipynb

Check the Chain (ctc)

5.18.15 Uniswap V2

Examples

Note

These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

Reference

async

async

async

async

async

async

ctc.protocols

ctc.protocols

ctc.protocols

ctc.protocols

ctc.protocols

ctc.protocols

.uniswap_v2_utils.

.uniswap_v2_utils.

.uniswap_v2_utils.

.uniswap_v2_utils

.uniswap_v2_utils

.uniswap_v2_utils

async_get_pool_burns (pool_address, *, start_block=None,

end_block=None, start_time=None,
end_time=None,
include_timestamps=False,
replace_symbols=False,
normalize=True, provider=None,
verbose=False)

async_get_pool_decimals (pool=None, *, x_address=None,

y_address=None, provider=None)

async_get_pool_mints(pool_address, *, start_block=None,

end_block=None, start_time=None,
end_time=None,
include_timestamps=False,
replace_symbols=False,
normalize=True, provider=None,
verbose=Fualse)

.async_get_pool_state(pool, *, block=None, provider=None,

normalize=True, fill_empty=True)

.async_get_pool_state_by_block(pool, *, blocks,

provider=None,
normalize=True)

.async_get_pool_swaps (pool, *, start_block=None,

end_block=None, start_time=None,
end_time=None,
include_timestamps=False,
include_prices=False,
include_volumes=False, label="index’,
normalize=True, provider=None,
verbose=Fulse)

async ctc.protocols.uniswap_v2_utils.async_get_pool_symbols(pool=None, *, x_address=None,

y_address=None, provider=None)

async ctc.protocols.uniswap_v2_utils.async_get_pool_tokens (pool, provider=None)

48

Chapter 5. External Data Sources

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/uniswap_v2.ipynb

Check the Chain (ctc)

5.18.16 Uniswap V3

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

Reference

async ctc.protocols.uniswap_v3_utils.async_get_pool_metadata(pool_address, **rpc_kwargs)

async ctc.protocols.uniswap_v3_utils.async_get_pool_swaps (pool_address, *, start_block=None,
end_block=None, start_time=None,
end_time=None,
include_timestamps=False,
replace_symbols=False,
normalize=True)

async ctc.protocols.uniswap_v3_utils.async_quote_exact_input_single (token_in, token_out, *, fee,
amount_in,
sqrt_price_limit_x96=0,
provider=None,
block=None)

async ctc.protocols.uniswap_v3_utils.async_quote_exact_output_single (foken_in, token_out, *, fee,
amount_out,
sqrt_price_limit_x96=0,
provider=None,
block=None)

5.18.17 Yearn

Examples

Note
These examples are crafted as a Jupyter notebook. You can download the original notebook file here.

Also note that inside Jupyter notebooks, await can be used freely outside of asyncio.run(Q).

5.18. Specific Protocols 49

https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/uniswap_v3.ipynb
https://jupyter.org/
https://github.com/sslivkoff/ctc-doctest/blob/main/source/python/notebooks/protocols/yearn.ipynb

Check the Chain (ctc)

5.18.18 On-chain Protocols

Protocol Examples Reference Source
Aave V2 Examples Reference Source
Balancer Examples Reference Source
Chainlink Examples Reference Source
Compound Examples Reference Source
Curve Examples Reference Source
ENS Examples Reference Source
Fei Examples Reference Source
Gnosis Safe Examples Reference Source
Multicall Examples Reference Source
Rari Examples Reference Source
Uniswap V2 Examples Reference Source
Uniswap V3 Examples Reference Source
Yearn Examples Reference Source

5.18.19 External Data Sources

Protocol Examples Reference Source
4byte Examples Reference Source
Coingecko Examples Reference Source
Defi Llama Examples Reference Source
Etherscan Examples Reference Source

5.19 Similar Python Tools

5.19.1 web3.py

web3.py is a general purpose EVM library that is created and maintained by the Ethereum Foundation. Although
web3.py and ctc have some overlapping functionality, they focus on different things. Web3.py supports full wallet
functionality, whereas ctc is currently limited to read-only operations. Web3.py also supports a greater variety of
communication protocols including websockets.

On the other hand, ctc is primarily aimed at historical data analysis. It contains more functions for aggregating histori-
cal datasets from various on-chain protocols. Additionally, web3.py is primarily synchronous, whereas ctc is primarily
asynchronous.

5.19.2 ape

ape is another general purpose EVM library that aims to improve upon web3.py in a variety of areas. Ape features
direct integrations with many tools for both the development and deployment of smart contracts. Ape has plugins for
many popular languages and tools including vyper, solidity, foundry, and hardhat.

50 Chapter 5. External Data Sources

protocols/aave_v2.html
protocols/aave_v2.html#examples
protocols/aave_v2.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/aave_utils/
protocols/balancer.html
protocols/balancer.html#examples
protocols/balancer.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/balancer_utils/
protocols/chainlink.html
protocols/chainlink.html#examples
protocols/chainlink.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/chainlink_utils
protocols/compound.html
protocols/compound.html#examples
protocols/compound.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/compound_utils/
protocols/curve.html
protocols/curve.html#examples
protocols/curve.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/curve_utils/
protocols/ens.html
protocols/ens.html#examples
protocols/ens.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/ens_utils/
protocols/fei.html
protocols/fei.html#examples
protocols/fei.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/fei_utils/
protocols/gnosis_safe.html
protocols/gnosis_safe.html#examples
protocols/gnosis_safe.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/gnosis_utils/
protocols/multicall.html
protocols/multicall.html#examples
protocols/multicall.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/multicall_utils/
protocols/rari.html
protocols/rari.html#examples
protocols/rari.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/rari_utils/
protocols/uniswap_v2.html
protocols/uniswap_v2.html#examples
protocols/uniswap_v2.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/uniswap_v2_utils/
protocols/uniswap_v3.html
protocols/uniswap_v3.html#examples
protocols/uniswap_v3.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/uniswap_v3_utils/
protocols/yearn.html
protocols/yearn.html#examples
protocols/yearn.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/yearn_utils/
protocols/4byte.html
protocols/4byte.html#examples
protocols/4byte.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/fourbyte_utils/
protocols/coingecko.html
protocols/coingecko.html#examples
protocols/coingecko.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/coingecko_utils/
protocols/llama.html
protocols/llama.html#examples
protocols/llama.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/llama_utils/
protocols/etherscan.html
protocols/etherscan.html#examples
protocols/etherscan.html#reference
https://github.com/fei-protocol/checkthechain/tree/main/src/ctc/protocols/etherscan_utils/
https://github.com/ethereum/web3.py
https://github.com/ApeWorX/ape

Check the Chain (ctc)

5.19.3 ethtx

ethtx is a library for decoding and summarizing individual transactions. You can see it in action at https://ethtx.info/.
Although ctc has its own transaction summarizing capabilities, it is currently much more limited than ethtx when it
comes to tracing internal transactions and revealing the resultant state changes. These types of features may come to
ctc in a future release.

5.19. Similar Python Tools 51

https://github.com/ethtx/ethtx
https://ethtx.info/

Check the Chain (ctc)

52 Chapter 5. External Data Sources

A

async_build_event_signatures_dataset() (in
module ctc.protocols.fourbyte_utils), 41

async_build_function_signatures_dataset() (in
module ctc.protocols.fourbyte_utils), 41

async_create_payload() (in module
cte.protocols.fei_utils), 46

async_decompile_function_abis()
ctc.evm), 36

(in module

async_get_all_pools() (in module
ctc.protocols.rari_utils), 47

async_get_base_pools() (in module
cte.protocols.curve_utils), 44

async_get_block() (in module ctc.evm), 37

async_get_block_of_timestamp() (in module
ctc.evm), 37

async_get_blocks() (in module ctc.evm), 37

async_get_blocks_of_timestamps() (in module
ctc.evm), 38

async_get_borrow_apy() (in module
ctc.protocols.compound_utils), 43

async_get_borrow_apy_by_block() (in module

cte.protocols.compound_utils), 43
async_get_contract_abi() (in module ctc.evim), 36
async_get_contract_creation_block() (in module

ctc.evm), 36
async_get_ctoken_state() (in

cte.protocols.rari_utils), 47
async_get_ctoken_state_by_block() (in module

cte.protocols.rari_utils), 47
async_get_deposits() (in

ctc.protocols.aave_v2_utils), 42
async_get_erc20_balance() (in module ctc.evm), 38
async_get_erc20_balance_by_block() (in module

ctc.evm), 38
async_get_erc20_balances_from_transfers() (in

module ctc.evim), 38
async_get_erc20_balances_of_addresses() (in

module ctc.evim), 38
async_get_erc20_decimals() (in module ctc.evim),

38
async_get_erc20_name () (in module ctc.evm), 38

module

module

INDEX

async_get_erc20_symbol () (in module ctc.evm), 38

async_get_erc20_total_supply() (in module
ctc.evm), 39

async_get_erc20_total_supply_by_block() (in
module ctc.evm), 39

async_get_erc20_transfers() (in module ctc.evin),
39

async_get_erc20s_balances() (in module ctc.evm),
39

async_get_erc20s_decimals() (in module ctc.evim),
39

async_get_erc20s_names () (in module ctc.evm), 39

async_get_erc20s_symbols() (in module ctc.evin),
39

async_get_erc20s_total_supplies() (in module
ctc.evm), 39

async_get_event_abi () (in module ctc.evm), 36

async_get_events() (in module ctc.evm), 40

async_get_expiration() (in
cte.protocols.ens_utils), 45

async_get_function_abi () (in module ctc.evm), 36

async_get_interest_rates() (in module
cte.protocols.aave_v2_utils), 42

async_get_interest_rates_by_block() (in module
cte.protocols.aave_v2_utils), 42

module

async_get_meta_pools() (in module
cte.protocols.curve_utils), 44
async_get_owner() (in module
cte.protocols.ens_utils), 45
async_get_pcv_stats() (in module
cte.protocols.fei_utils), 46
async_get_pcv_stats_by_block() (in module
cte.protocols.fei_utils), 46
async_get_plain_pools() (in module
cte.protocols.curve_utils), 44
async_get_pool_address() (in module
cte.protocols.balancer_utils), 42
async_get_pool_balances() (in module
cte.protocols.balancer_utils), 42
async_get_pool_burns() (in module
cte.protocols.uniswap_v2_utils), 48
async_get_pool_ctokens() (in module

53

Check the Chain (ctc)

ctc.protocols.rari_utils), 47

async_get_pool_decimals() (in
cte.protocols.uniswap_v2_utils), 48
async_get_pool_fees() (in
ctc.protocols.balancer_utils), 42
async_get_pool_id() (in
ctc.protocols.balancer_utils), 42
async_get_pool_metadata() (in
cte.protocols.curve_utils), 44
async_get_pool_metadata() (in
cte.protocols.uniswap_v3_utils), 49
async_get_pool_mints() (in
cte.protocols.uniswap_v2_utils), 48
async_get_pool_prices() (in
cte.protocols.rari_utils), 47
async_get_pool_state() (in
ctc.protocols.curve_utils), 44
async_get_pool_state() (in

cte.protocols.uniswap_v2_utils), 48
async_get_pool_state_by_block() (in
cte.protocols.uniswap_v2_utils), 48
async_get_pool_swaps() (in
ctc.protocols.balancer_utils), 42
async_get_pool_swaps() (in
cte.protocols.uniswap_v2_utils), 48
async_get_pool_swaps() (in
cte.protocols.uniswap_v3_utils), 49
async_get_pool_symbols() (in
cte.protocols.uniswap_v2_utils), 48
async_get_pool_tokens() (in
cte.protocols.balancer_utils), 42
async_get_pool_tokens() (in
cte.protocols.uniswap_v2_utils), 48
async_get_pool_tvl_and_tvb() (in
cte.protocols.rari_utils), 47

async_get_pool_underlying_tokens() (in

cte.protocols.rari_utils), 47
async_get_pool_weights() (in
ctc.protocols.balancer_utils), 43

async_get_pool_weights_by_block() (in

cte.protocols.balancer_utils), 43
async_get_registration_block() (in
ctc.protocols.ens_utils), 45

async_get_registrations() (in
ctc.protocols.ens_utils), 45
async_get_reserve_data() (in

cte.protocols.aave_v2_utils), 42

async_get_reserve_data_by_block() (in

ctc.protocols.aave_v2_utils), 42
async_get_supply_apy () (in

ctc.protocols.compound_utils), 43
async_get_supply_apy_by_block() (in

ctc.protocols.compound_utils), 43
async_get_text_records() (in

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

cte.protocols.ens_utils), 45

async_get_token_multipool_stats() (in module

cte.protocols.rari_utils), 47

async_get_transaction() (in module ctc.evm), 40

async_get_transaction_count() (in
ctc.evm), 40
async_get_underlying_asset() (in
cte.protocols.aave_v2_utils), 42
async_get_virtual_price() (in
cte.protocols.curve_utils), 44
async_get_withdrawals() (in
cte.protocols.aave_v2_utils), 42

async_normalize_erc20_quantities() (in

ctc.evm), 39

async_normalize_erc20_quantity() (in

ctc.evm), 39
async_print_all_pool_summary() (in

cte.protocols.rari_utils), 47
async_print_feed_summary () (in

cte.protocols.chainlink_utils), 43

async_print_fuse_token_summary() (in

cte.protocols.rari_utils), 47

async_print_pcv_assets() (in
cte.protocols.fei_utils), 46
async_print_pcv_deposits() (in

cte.protocols.fei_utils), 46
async_query_event_signatures() (in
cte.protocols.fourbyte_utils), 41

async_query_function_signatures() (in

cte.protocols.fourbyte_utils), 41

async_quote_exact_input_single() (in

cte.protocols.uniswap_v3_utils), 49

async_quote_exact_output_single() (in

cte.protocols.uniswap_v3_utils), 49
async_record_exists() (in
cte.protocols.ens_utils), 45
async_reverse_lookup() (in
cte.protocols.ens_utils), 45
async_summarize_pool_state() (in
cte.protocols.balancer_utils), 43

H

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

module

hash_name () (in module ctc.protocols.ens_utils), 45

54

Index

	Features
	Guide
	Datatypes
	Specific Protocols
	External Data Sources
	Installation
	Basic Installation
	Upgrading
	Uninstalling
	Special Installations
	Installing from source
	Installing in develop mode / edit mode

	Libraries

	Dependencies
	OS Dependencies
	Libraries
	Type Checking
	Testing
	Documentation
	Databases

	Configuration
	Setting Config Parameters
	Config Parameters
	Reading Config Parameters

	Changelog
	0.3.0
	DB
	Documentation
	CLI
	Config
	Protocols
	Data Operations
	Testing
	Performance
	Python
	Other
	Upgrade Guide
	API Changes

	0.2.10
	0.2.9
	0.2.8
	0.2.7
	0.2.6
	0.2.5
	0.2.4
	0.2.3
	0.2.2
	0.2.1

	FAQ
	What are the goals of ctc?
	Why use async?
	Do I need an archive node?
	Is ctc useful for recent, non-historical data?

	Obtaining Data
	Sources of Historical Data
	Other types of data

	Storing Data
	Data Storage Backends
	Filesystem
	SQL Databases

	Performance
	Optimizing Performance
	RPC Provider
	Python Versions
	Python Packages
	Data Storage
	Data Caching
	Logging

	Benchmarking Performance
	Benchmarking Speed
	Measuring Storage Usage

	Monitoring
	Logging
	Other monitoring

	Basic Usage
	Subcommands
	Admin Subcommands
	aliases
	chains
	config
	db
	log
	setup

	Compute Subcommands
	ascii
	checksum
	create address
	decode
	decode call
	encode
	hex
	int
	keccak
	limits
	lower
	rlp encode
	selector

	Data Subcommands
	abi
	abi diff
	address
	address txs
	block
	blocks
	bytecode
	call
	call all
	calls
	chain
	decompile
	dex chart
	dex pool
	dex pools
	dex trades
	erc20
	erc20 balance
	erc20 balances
	erc20 transfers
	eth balance
	eth balances
	events
	gas
	proxy
	proxy register
	storage
	symbol
	timestamp
	tx

	Protocol Subcommands
	4byte
	4byte build
	aave
	aave addresses
	cg
	chainlink
	chainlink feeds
	curve pools
	ens
	ens exists
	ens hash
	ens owner
	ens records
	ens resolve
	ens reverse
	etherscan
	fei analytics
	fei depth
	fei dex
	fei pcv
	fei pcv assets
	fei pcv deposits
	fei psms
	gnosis
	llama
	llama chain
	llama chains
	llama pool
	llama pools
	llama protocol
	llama protocols
	rari
	rari pools
	uniswap burns
	uniswap chart
	uniswap mints
	uniswap pool
	uniswap swaps
	yearn
	yearn addresses

	Other Subcommands
	cd
	help
	version

	Useful Aliases
	The Aliases

	Similar CLI tools
	ethereum-etl
	TrueBlocks
	ethereal, seth, and cast

	Basic Usage
	RPC Client Subpackage ctc.rpc
	Protocol-specific Subpackages ctc.protocols
	Other Subpackages

	RPC Client
	Implementation of Methods
	RPC Providers
	Typical RPC Request Lifecycle in ctc

	Asynchronous Code
	Datatypes
	ABIs
	Examples
	Reference

	Contracts
	Examples
	Reference

	Binary Data
	Examples
	Reference

	Blocks
	Examples
	Reference

	ERC20s
	Examples
	Reference

	ETH Balances
	Examples
	Reference

	Events
	Examples
	Reference

	Transactions
	Examples
	Reference

	Specific Protocols
	4byte
	Examples
	Reference

	Aave V2
	Examples
	Reference

	Balancer
	Examples
	Reference

	Chainlink
	Examples
	Reference

	Compound
	Examples
	Reference

	Gnosis Safe
	Examples

	Curve
	Examples
	Reference

	Gnosis Safe
	Examples

	ENS
	Examples
	Reference

	Fei
	Examples
	Reference

	Gnosis Safe
	Examples

	Defi Llama
	Examples

	Multicall
	Examples

	Rari
	Examples
	Reference

	Uniswap V2
	Examples
	Reference

	Uniswap V3
	Examples
	Reference

	Yearn
	Examples

	On-chain Protocols
	External Data Sources

	Similar Python Tools
	web3.py
	ape
	ethtx

	Index

